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Summary

The identification of effective targets for resection 
is a crucial requirement for the surgical treatment of 
epilepsy. Quantitative methods have the potential to 
provide beneficial information in this regard and might 
in the future reduce the necessary time and effort for 
physicians.

The approach described here uses a distributional 
clustering framework for the modeling of multivari-
ate time series to predict the efficacy of arbitrary re-
sections. This novel approach allows simulating the 
resection of any combination of channels and assigns 
them a collective value indicating the likelihood of the 
model’s ictal state. When simulated, the majority of 
resections that rendered patients seizure free in reality 
(Engel class I) considerably decrease the probability of 
the ictal state compared to the situation of no resec- 
tion. The same is not the case for most actually per- 
formed but ineffective resections (Engel class IV) and 
most random simulated resections.

The presented method enables physicians to test 
planned resections in silico for their efficacy before 
surgery. Further validation could help to establish this 
method in the clinical routine and thereby not only dis-
burden physicians from a cumbersome and error prone 
task but also introduce objectivity into it and eventual-
ly increase the success rate in epilepsy surgery.
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Computerbasierte Vorhersage der Wirkung von 
Epilepsiechirurgie

Bei der chirurgischen Behandlung von Epilepsie ist 
es entscheidend, Gewebe zu identifizieren, dessen Re-
sektion einen positiven Effekt für den Patienten hat. 
Quantitative Methoden können diesbezüglich hilfrei-
che Informationen bereitstellen und somit den Arbeits- 
und Zeitaufwand für Ärzte verringern. Bis heute werden 
quantitative Methoden im routinemässigen Arbeitsab-
lauf jedoch kaum verwendet und die zu resezierenden 
Hirnareale werden nach wie vor fast ausschliesslich von 
Experten durch visuelle Analyse bestimmt.

Die hier beschriebene Methode modelliert die zeit-
liche Entwicklung von intrakraniellen EEG-Ableitun-
gen, um die Wirksamkeit hypothetischer Resektionen 
vorherzusagen. Das Modell berechnet dazu die Wahr-
scheinlichkeit iktaler Zustände für die simulierte Re-
sektion beliebiger Kombinationen von EEG-Kanälen. 
Verglichen mit dem Ausgangszustand führt die Simula-
tion von tatsächlich durchgeführten Resektionen, unter 
welchen die Patienten anfallsfrei wurden (Engel-Klasse 
I) im Modell mehrheitlich zu einer erheblich tieferen 
Wahrscheinlichkeit iktaler Zustände. Bei den meisten 
Resektionen, die keinen vorteilhaften Effekt für den 
Patienten hatten (Engel-Klasse IV) und den meisten zu-
fälligen simulierten Resektionen ist keine vergleichbare 
Wahrscheinlichkeitsabnahme zu beobachten.

Dieser neuartige Ansatz ermöglicht es Ärzten, ge-
plante Resektionen zuerst am Computer auf ihre ver-
mutliche Wirksamkeit zu prüfen. Eine umfangreichere 
Validierung könnte diese Methode im klinischen All-
tag etablieren und dadurch Ärzte von mühsamen und 
fehleranfälligen Arbeiten entlasten, ein erhöhtes Mass 
an Objektivität in den prächirurgischen Arbeitsprozess 
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bringen und voraussichtlich die Erfolgsrate in der Epi-
lepsiechirurgie erhöhen.

Schlüsselwörter: Epilepsie, quantitative EEG-Analyse, 
Epilepsiechirurgie, prädiktive Simulation

Résection virtuelle pour simuler la chirurgie de 
l’épilepsie

Dans la chirurgie de l’épilepsie, il est crucial d’iden-
tifier avec précision la zone à réséquer. Les méthodes 
quantitatives peuvent y contribuer, et vont potentielle-
ment faciliter les investigations pré-chirurgicales. A ce 
jour les approches quantitatives n’ont cependant pas 
encore été intégrées dans la décision clinique, et l’iden-
tification des cibles de la chirurgie est faite par examen 
visuel. L’approche que nous décrivons ici utilise des mé-
thodes de partitionnement de données («clustering» 
en anglais) appliquées aux séries temporelles pour 
prédire l’effet de différentes résections. Cette nouvel-
le approche nous permet de simuler la résection d’un 
groupe de canaux, et d’attribuer à la configuration res-
tante une probabilité d’entrer ou non dans un état ictal. 
Lorsque nous simulons la résection effectuée chez les 
patients sans crises après l’intervention (Engel 1), notre 
model prédit une probabilité plus faible pour la résur-
gence d’un état ictal. Par contre, si nous simulons la ré-
section effectuée chez des patients avec persistance de 
crises après l’opération, ou des résections au hasard, on 
note que cette probabilité n’est pas diminuée. 

La méthode que nous présentons permet donc aux 
cliniciens de tester des résections in silico avant de les 
réaliser. La validation clinique de notre méthode pour-
rait aider le clinicien, en introduisant une méthode ob-
jective dans la bilan pré-chirurgical de l’épilepsie.

Mots-clés : épilepsie, EEG quantitatif, chirurgie résec-
tive, prédiction

Introduction

Epileptic seizures heavily decrease patients’ quality 
of life. To render patients seizure free is thus the main 
goal of epilepsy treatment. Using pharmaceuticals, this 
is not achieved in around one third of all epilepsy pa-
tients [1-4]. For those suffering from pharmacoresist-
ant focal onset epilepsies, surgical treatment can be 
considered. Surgical treatment aims to remove the tis-
sue that is necessary and sufficient for the generation 
of epileptic seizures, termed the epileptogenic zone 
(EZ) [5, 6]. Since this zone is a theoretical concept, there 
is no technique to directly identify it by any current im-
aging or electrophysiological technique and clinicians 
are forced to use approximations. 

One proxy that is often used in practice is the sei-
zure onset zone (SOZ) which is defined by the channels 
of an EEG recording first showing continuous epilepti-
form activity. The SOZ is thought to overlap with the EZ 
but its exact boundaries and the actual extent of over-
lap with the EZ remain unknown [5]. Nowadays, the 
determination of the SOZ is still mainly done visually 
by human experts, as no automated method has found 
its way into clinical routine. However, the visual analy-
sis has several disadvantages: It requires time and lacks 
objectivity. Also the success rate of the current practice 
leaves room for improvement – long-term seizure free-
dom is achieved in up to 2/3 of patients [7-10].

Computational analysis of intracranial EEG (iEEG) 
data could help to improve on all these issues and thus 
has evoked large interest and extensive research. A vari-
ety of techniques based on different mathematical and 
physical concepts has been applied to iEEG to identify 
tissue for surgical resection. Signals can be analyzed 
individually (univariate) or by their interrelations with 
other signals (bivariate and multivariate), whereas 
the latter can be further divided into symmetric rela-
tions (undirected) and causal relations (directed). Fur-
thermore, such techniques can be linear or non-linear 
and they can be applied in signal space or in frequency 
space. For a comprehensive survey the interested read-
er may refer, for example, to [11].

Functional network analysis has been used to iden-
tify critical channels as potential targets for surgical 
removal. Typically, each channel constitutes a node and 
connections between nodes are determined by some 
pairwise dependency measure. Using graph theory 
nodes can be characterized and selected by their posi-
tion or influence in the network regarding connectiv-
ity, centrality or similar. Several studies have shown 
relations between such salient nodes and the resected 
brain tissue and its related post-surgical outcome [12-
16]. A limitation of these approaches is their descriptive 
nature, i.e. they cannot make predictions about the sys-
tem under modifications; also, the pairwise construc-
tion of node relations does not capture statistical de-
pendencies of higher order.

Few studies presented computational models to 
simulate and assess resective surgery targets in silico. 
Hutchings et al. combined a nonlinear computational 
model with subject-specific diffusion tensor imaging 
data [17]. Sinha et al. set up patient-specific dynami-
cal network models using network connectivity derived 
from interictal ECoG data [18, 19]. Goodfellow et al. 
used the first half of seizures from iEEG data to derive 
patient-specific functional networks of neural mass 
models which then allow to test alternative resection 
strategies [20]. Using various periictal segments of the 
same patients’ data, Lopes et al. set up a mathemati-
cal model to examine the contribution of brain regions 
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to seizure generation and thereby make recommenda-
tions for resection [21]. All these models have shown to 
capture crucial features of the data and to provide ad-
ditional clinically relevant information.

Here we present some illustrative examples of a fur-
ther method recently developed at the Inselspital [22] 
that sets up a probabilistic model that, after a learning 
procedure, can be used to simulate the effects of the re-
moval of tissue beneath the electrodes of the EEG. In 
particular, it allows making predictions about seizure 
likelihood after selective elimination of input signals 
(EEG channels). The method has been shown to predict 
a clear decrease in seizure likelihood when resections 
are simulated that rendered the corresponding patients 
seizure free in reality. Vice versa, resections which did 
not have any beneficial effect for the patients in reality 
do generally not decrease the predicted seizure likeli-
hood when simulated [22].

Figure 1: The course of actions to generate a model from an intracranial EEG recording (left half) and to make a prediction for 
an arbitrary resection using the model (right half). Further explanations can be found in the text.  

A soft clustering method

In the following, a brief description is provided how 
a model is derived from an iEEG recording (left half of 
Fig. 1) and how this model is used to make predictions 
about the efficacy of resections (right half of Fig. 1). For 
a detailed mathematical description and an in-depth 
understanding of the process please refer to the meth-
od’s original publication [22].

At the beginning a model is generated using the 
data of all channels of a periictal segment, containing 
the complete seizure and the immediately preceding 
180 second (s) preictal period. This allows the model to 
learn both, ictal and non-ictal activity. Afterwards the 
model is used with the data of all channels, but only 
from the preictal segment. This constitutes the situ-
ation when no resection is simulated. Then, the data 
of an arbitrary set of channels is removed for the en-
tire recording which simulates the resection of this set. 
The difference between this situation and the situation 
where no resection was simulated yields the model’s 
prediction about the efficacy of the specific resection. 
The actual set of channels recording from tissue that 
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was later resected is subsequently referred to as the ac-
tual resection (determined using coregistered pre- and 
post-operative MR images and post-implantation CT 
images [15]).

Initially the periictal iEEG data of a recording (panel 
1 in figures 2-4) is preprocessed (filtered and normal-
ized channel-wise), discretized to 7 values and time 
windowed (window length = 1.25s). The discretized 
values of all channels inside a window constitute a dis-
tribution and all these empirical distributions are clus-
tered to get 6 representative distributions (the cluster 
centroids, in the following called the model’s states). It 
can now be determined for each time step which state 
best represents the data in that window (panel 2 in fig-
ures 2-4). This is the model’s description of the full data. 
Using this description one can define the probabilities 
of all states when no further information is provided 
(prior probabilities) and the transition probabilities be-
tween states. The time point of seizure onset (visually 
identified by an experienced epileptologist) separates 
the recording into a preictal phase and an ictal phase. If 
a state is occurring mainly during the preictal phase it is 
considered a non-ictal state, by contrast states mainly 
occurring in the ictal phase are considered ictal states. 

The seizure onset also determines the time point af-
ter which no iEEG data is provided to the model when 
making predictions (following referred to as cutting the 
data). In these simulations, the probability distribution 
of the states before seizure onset and the transition 
probabilities induce the states’ temporal dynamics in 
the ictal phase. When the data is cut (panel 3 in figures 
2-4) one calculates the probabilities of each state at 
each time step (posterior probabilities). The summed 
probability of all ictal states in the ictal phase deter-
mines the predicted likelihood of a seizure occurring. 

Repeating this process, but with the input data of 
some channels removed over the whole recording (pan-
el 4 and 5 in figures 2-4), simulates the resection. The 
resulting likelihood of a seizure occurring in contrast 
to the situation where no resection is simulated deter-
mines the predicted efficacy of this resection to hinder 
the development of seizures. We call this predicted ef-
ficacy dynamical outcome which is 1 for complete sei-
zure abatement, between 0 and 1 for lower predicted 
benefit or below 0 if the resection is even expected to 
worsen the situation.

Example cases

We now show three examples of the procedure 
described above. In all cases the periictal iEEG time 
series is shown in the first panel with the clinically 
determined seizure onset at 180s. The second panel 
shows the corresponding temporal evolution of the 
state probabilities when the full iEEG data is fed to the 
model. This determines the ictal states (the states pre-
dominantly active after 180s) and the time point to cut 

the input data for the subsequent simulations. If the 
input data is cut, the state probabilities develop accord-
ing to the model afterwards which is shown in the third 
panel. The fourth and the fifth panel show situations 
when additionally the input data of certain channels is 
removed completely, for the actual resection (panel 4) 
and an equally sized random set of channels (panel 5).

The first case is of a patient with Engel class I (i.e. 
the patient was seizure free after resection). After the 
seizure onset, different states become probable that 
have not been probable before. In both cases where the 
full data is provided (panel 2 of Fig. 2) and with the da-
ta cut after seizure onset (panel 3 of Fig. 2), the transi-
tions to state 4 and then to states 2 and 5 remain simi-
lar. According to the second panel, the states 1-2 and 
4-5 are classified as the ictal states. When simulating 
the patient’s actual resection, the probabilities of the 
ictal states largely vanish and the non-ictal state 6 be-
comes highly probable. This indicates that the removal 
of these channels is expected to prevent the develop-
ment of seizures (panel 4 of Fig. 2). 

Since this patient became seizure free after surgery, 
this is what one would expect from the corresponding 
simulation. A majority of tested random resections con-
taining the same number of channels as the actual re-
section have no such effect. This indicates they would 
not help to reduce seizure occurrence as one would ex-
pect from arbitrary resections (one example shown in 
panel 5 of Fig. 2). Accordingly, this patient counts as a 
true positive case in the summary statistics (see below).

The second case is from an Engel class IV patient 
(i.e. no improvement at all after surgery). The succes-
sion of states in the ictal part of the recording does 
not change when no input data is provided in this part 
(panel 2 and 3 of Fig. 3). In patients without any reduc-
tion of seizure occurrence in reality, one would obvious-
ly want the model to predict the same. However, in this 
case the simulation of the actual resection extensively 
lowers the probability of the ictal states (2-6) (panel 4 
of Fig. 3). This can typically not be observed for random 
resections (panel 5 of Fig. 3). The patient thus counts as 
a false positive.

The third case is again from a class IV patient. The 
initial order of states becoming active in the ictal part 
(panel 2 of Fig. 4) is not observable after the data is cut 
at seizure onset (panel 3 of Fig. 4). This time the simula-
tion of the actual resection correctly predicts it to have 
no beneficial effect for the patient (no decrease of the 
probabilities of the ictal states 2-5) (panel 4 of Fig. 4). 
The same is the case for most random resections and 
some, as the one displayed in panel 5, are also predict-
ed to be more beneficial for the patient than the actual 
resection (lower probability of the ictal states). This pa-
tient counts as a true negative.
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Figure 2: Panel 1 shows the segment of the intracranial EEG recording of a class I patient (4) that was used to create the model 
which then correctly predicts the efficacy of the actual resection (dynamical outcome = 0.955). The clinically determined 
seizure onset is at 180s and channels recording from brain tissue that was subsequently resected are in red. Panels 2-5 show 
for different situations the probabilities (color coded) of the model's states (y-axis) over time (x-axis). Panel 2: full iEEG data is 
provided to the model for the preictal and the ictal phase. Based on this analysis states 1-2 and 4-5 are defined as ictal states 
because they are mainly probable during the seizure. Panel 3: iEEG data of all channels until the seizure onset is provided 
whereas the dynamics in the ictal phase are determined by the model only. Still, they strongly resemble the dynamics in  
panel 2. Panel 4: iEEG data of all but the actually resected channels until the seizure onset is provided. The model predicts a 
high probability of a non-ictal state (state 6) throughout. Panel 5: iEEG data of all but a random selection of channels until the 
seizure onset is provided. The model predicts an ictal dynamic.

Summary statistics

In former publications this method was applied to 
groups of pharmacoresistant epilepsy patients that had 
resective surgery with known outcome and a follow-up 
of at least one year [22, 23]. We here show the sum-
mary results for 20 patients (see [23] for details on the 
patients). Only patients free from seizures and auras 
after surgery (Engel class I) and patients for whom the 

surgery had no beneficial effect (Engel class IV) were in-
cluded.

We generated a model for the first artifact-free re-
cording of each patient and assessed the effectiveness 
of different simulated resections to prevent a develop-
ing seizure. For each model we simulated the resection 
of the channels that recorded from tissue that got af-
terwards resected during surgery (the actual resection). 
In addition, we tested for each patient’s model a set of 
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Figure 3: The same displays and depictions as in Fig. 2 for a class IV patient (15) where the model falsely predicts considerable 
benefit for the patient from the actual resection (dynamical outcome = 0.896). The ictal states are in this case states 2-6.

3000 random resections. The number of channels in 
these random resections was constrained to the num-
ber of actually resected channels of the respective pa-
tient, and the channels of the actual resection were ex-
cluded from becoming part of the random resections.

This procedure was performed for all models and 
the results are collected in Figure 5. The sorted dynami-
cal outcomes of all simulated resections are shown as 
the cumulative distribution by the black line. From all 
random resections (~60’000) a large portion has a very 
low dynamical outcome indicating their inefficiency. 

 
 

 
 

Discussion

We applied a dynamic soft clustering approach for 
multivariate time series to intracranial EEG data of epi-
lepsy patients to predict the effectiveness of (virtual) 
resections to prohibit seizures. The probability of auto-
matically determined ictal model states was used as an 
outcome performance measure, called the dynamical 
outcome.

When simulating the resections actually performed 
in the patients, we found a considerable decrease in dy-
namical outcome in most Engel class I patients correctly 
predicting the benefit of the actual resection. Given the 
vast numbers of possible models and channel resection 
protocols, it is extremely unlikely to get these results by 
chance. In the Engel class IV patients, we found in most 
cases no considerable decrease of dynamical outcome 



168 Epileptologie 2018; 35 Virtual Resection for Predicting the Outcome of Epilepsy Surgery | M. Müller, C. Rummel, K. Schindler, A. Steimer

Figure 4: The same displays and depictions as in Fig. 2 for a class IV patient (17) where the model correctly predicts no 
improvement by the actual resection (dynamical outcome = 0.0). The ictal states are in this case states 2-5.

when simulating the actual resections. In this case the 
interpretation of the results is ambiguous as the nega-
tive prediction may also be caused by the model’s fail-
ure to capture crucial features of the time series. When 
simulating arbitrary resections, in all cases the major-
ity of resections are predicted to have no considerable 
beneficial effect. This verifies that the method is spe-
cific and does not predict high benefit for a dispropor-
tional number of resections.

These results suggest that the presented approach 
is capable of extracting key features of epileptic iEEG 
time series and, based on that, predicting the seizure-
preventing efficacy of different resection protocols. Vis-
ual analysis typically focuses on searching suspicious 
patterns as spike-waves or low-amplitude, fast oscil-
lations. This univariate view may be too simplistic for 
some forms of epileptic activity. Multivariate measures 

including complex interactions of multiple subparts of 
the epileptic brain could provide new and helpful infor-
mation. It will be the object of future work to identify 
these crucial features.

So far, most of these approaches share the limita-
tion that they can currently only make assessments of 
previously selected resections and are not able to pro-
vide the resection(s) predicted to be most beneficial. To 
find the best resection in the huge number of possible 
resections is a combinatorial optimization problem. In 
the case of nonlinear methods, there is (currently) no 
algorithm to solve this problem exactly in feasible time. 
Approximate algorithms like e.g. metaheuristic proce-
dures would be a possibility to extend such approaches 
to include that capability in the future.

To bring these technologies closer to clinical under-
standing and finally acceptance, one needs to inves-
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tigate the meaning of the cluster centers displayed in 
Figures 2-4. Are these clusters indicating the appear-
ance of certain wave-forms or wave-form distributions 
among iEEG channels?

Numerous approaches including the one presented 
here can be used to assess the efficacy of distinct and 
clinically preselected channel resections. In their visual 
analyses epileptologists focus on suspicious patterns 
such as spike-waves or low amplitude, fast oscillations, 
thus univariate signal characteristics. Suboptimal out-
comes suggest that at least some cases require more 
elaborated considerations like multivariate techniques 
incorporating complex interactions of different sub-
parts. This assumption is supported by the growing 
perception of epilepsy as a network phenomenon [13, 
15, 16, 24-30]. Computational models such as the clus-
tering procedure presented in this study could provide 
assistance to grasp such complex interactions and thus 
have the potential to improve the surgical treatment of 
epilepsy.
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