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Summary

EEG is an important tool in diagnostic and prognos-
tic evaluation of patients in the Intensive Care Unit. 
Current gold standard in EEG interpretation remains 
frame-by-frame visual analysis by a qualified encepha-
lographer. This procedure requires highly trained clini-
cians, is very time-consuming, and often lacks good 
inter-rater agreement. Computer-based approaches 
(quantitative EEG; qEEG) allow for faster analysis of 
long recordings, and for more objective findings. In 
addition to emulate classical visual analysis, qEEG can 
provide additional information, which would not be 
easily apparent to a human observer. 

This review presents different qEEG methods that 
have been proposed in ICU, with a particular focus on 
the crucial issue of outcome prediction after cardiac ar-
rest. We conclude by discussing possible future devel-
opment of qEEG in the light of the recent successes of 
so-called deep-learning.
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Quantitative EEG-Analyse auf der Intensivstation

Das Elektroenzephalogramm (EEG) spielt bei Pati-
enten auf der Intensivstation sowohl zur Diagnostik als 
auch zur Prognoseabschätzung eine wichtige Rolle. Der 
Goldstandard zur Interpretation des EEGs ist zurzeit die 
visuelle Analyse durch einen erfahrenen Epileptologen. 
Diese Art der Analyse ist aber einerseits sehr zeitinten-
siv und setzt hochqualifizierte Kliniker voraus, anderer-
seits bestehen dabei häufig auch deutliche inter-indivi-
duelle Unterschiede bzgl. der Interpretation des EEGs. 
Im Gegensatz dazu erlauben computerbasierte Ansätze 
(quantitative EEG-Analyse; qEEG) eine schnellere Analy-
se der EEG-Aufzeichnungen und lassen eine objektivere 
Analyse zu. Zudem kann die quantitative EEG-Analyse 
Aspekte hervorbringen, welche dem Menschen bei der 
visuellen Analyse verborgen bleiben. Die vorliegende 
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L‘électroencéphalographie quantitative aux soins 
intensifs

L’électroencéphalographie reste un outil diagnos-
tique et pronostique indispensable dans la prise en 
charge des patients aux soins intensifs. Le gold stan-
dard de l’interprétation de l’EEG reste l’analyse visuelle 
page par page par un(e) médecin spécialisé(e) en épi-
leptologie. Ce procédé peut prendre beaucoup de 
temps et il reste par nature subjectif. L’analyse assistée 
d’un ordinateur (électroencéphalographie quantitative; 
EEGQ) permet une interprétation plus rapide et plus 
objective. En plus de faciliter l’analyse visuelle conven-
tionnelle, l’analyse quantitative permet d’extraire des 
informations du tracé d’EEG que l’œil humain ne dis-
tingue pas forcément.   

Cette revue présente différentes techniques d’EEGQ 
utilisées aux soins intensifs, en particulier pour la ques-
tion essentielle de la prédiction de l’évolution clinique 
après arrêt cardiaque. Nous concluons par une discus-
sion sur les possibles futurs développements de l’EEGQ 
dans le contexte des succès récents de l’apprentissage 
profond («deep learning»).

 
Mots clés : Electroencéphalographie quantitative, soins 
intensifs, coma, prédiction
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Introduction

Because it directly reflects the activity of neurons, 
EEG plays an important role in the diagnostic and prog-
nostic in critically ill patients, in whom the neurologi-
cal examination is inevitably limited. Indications for 
EEG in the ICU are multiple: to rule out a non-convul-
sive status epilepticus in all patients with unexplained 
alteration in mental status, and to monitor the effect 
of seizure-suppressant treatment; to assist with prog-
nostication, in particular in patients with post-hypoxic 
encephalopathy after cardiac arrest (CA); or to detect 
delayed ischemia in comatose patients with intracere-
bral hemorrhage in whom neurological examination is 
unreliable [1]. In addition, EEG can help to identify the 
cause of coma. Triphasic waves with sagittal (i.e. anteri-
or-posterior or posterior-anterior) phase lag are sugges-
tive of metabolic-toxic encephalopathy, and periodic 
lateralized discharges might point to limbic encephali-
tis. These indications have been presented previously in 
“Epileptologie” (see issues 4/2012 and 2/2014).

In spite of its usefulness, EEG also has several limi-
tations. Despite the attempt to propose standardized 
interpretations [2], inter-rater agreement remains poor. 
For instance concerning prognostication after CA, the 
classification of EEG patterns in prognostic categories 
varies between studies [3 - 5]. Prognostication is fur-
ther complicated by the fact that similar patterns can 
reflect different conditions depending on the timing of 
the EEG [6]. Moreover, accurate interpretation of EEG 
requires intensive training and long experience, and 
can be time-consuming. Most peripheral hospitals will 
not have an electroencephalographer at disposal dur-
ing nights or weekends. Even in large centers, long-time 
recordings cannot always be interpreted in real time, 
which delays therapeutic interventions.

Quantitative EEG (qEEG) is a tentative approach to 
circumvent many of these limitations. In short, qEEG 
is a computer/algorithm-based analysis of EEG. Some 
authors distinguish the cases where some patterns are 
automatically recognized in the raw EEG data (“auto-
matic detection”) from cases where the EEG signal is 
transformed prior to automatic analysis. We will refer 
to both procedures as qEEG. 

The aim of this contribution is to give a general 
overview of the possibilities and limitations of qEEG to 
an audience not familiar with quantitative methods. 
We have organized the presentation based on the goals 
of the different studies, namely to better character-
ize classical EEG patterns in order to differentiate sub-
types; to serve as surrogate electroencephalographers; 
or, by contrast, to provide the clinicians with additional 
information that cannot be obtained by a human in-
terpreter. While necessarily arbitrary, this classifica-
tion has the merit to enforce a fundamental rule of all 
quantitative approaches: The necessity to first precisely 
define a question, before hoping to get a meaningful 
answer from an algorithm.

Quantitative characterization of classical EEG 
patterns

 
Generalized periodic discharges (GPD) are a clas-

sical EEG pattern recorded in ICU patients, especially 
after CA, in which case it is usually associated with an 
unfavorable outcome. In order to increase the diagnos-
tic yield, several studies have tried to identify sub-types 
of GPD, based on the persistence of a continuous back-
ground, on the morphology and the frequency of pe-
riodic discharges. In a recent study by Ruijter et al. [7], 
two qEEG measures were used to assess these aspects 
more quantitatively in a cohort of patients with post-
anoxic encephalopathy. The first qEEG measure was 
used to quantify the background continuity. It was de-
fined as follows: Continuity = Tnorm/ (Tnorm + Tsupp), where 
Tnorm denotes the time during which the EEG amplitude 
exceeds 10 uV, and Tsupp the time during which the am-
plitude is below this threshold. This example represents 
an ideal qEEG measure: The definition is unambiguous, 
easily implemented in an algorithm, and extremely 
fast to compute, so that it can be used even on-line for 
several days of recordings. In addition, the meaning of 
this formula is intuitive, because it is easily visualized. 
There is only one parameter, namely the threshold for 
defining “suppression”. The authors could show that 
patients with good outcome had a significantly higher 
continuity index than patients with poor outcome. 

Next, the authors wanted to characterize the fre-
quency, periodicity, power, and similarity of discharges. 
These measures are again straightforward to imple-
ment, once the individual discharges have been identi-
fied. This implies that the discharges must be marked 
manually, or automatically with a detection algorithm 
prior to analysis. To this end a modified version of an 
algorithm originally developed for the detection of 
epileptic spike trains in neonatal seizure was invoked, 
with customized threshold values. In contrast to the 
continuity measure discussed above, the epileptic spike 
train detector however is much less intuitive, and relies 
on several parameters that the user has to set by hand, 
the effects of which are not immediately obvious. The 
agreement of the epileptic spike detector with visual in-
spection by an experienced encephalographer was less 
than 80%. This example illustrates the dilemma some-
times encountered with qEEG used for pattern recogni-
tion: algorithms are more error-prone, but much faster 
than visual analysis – a crucial point in order to analyze 
large amount of data. The authors could show that oc-
currence of status epilepticus prior to improvement to 
a continuous pattern was highly specific for unfavora-
ble outcome. Other features associated with unfavora-
ble outcome were lower discharge frequency, higher 
discharge power and periodicity.

In another study, the same group investigated a 
sub-type of burst suppression patterns, namely “burst-
suppression with identical bursts” [8]. In a collective of 
970 EEGs, burst-suppression with identical bursts oc-
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tried to propose more objective definitions of reactiv-
ity based on quantitative measures. Noirhomme et 
al. [10] compared the power spectrum for one-second 
time-windows before and after stimulations. The EEG 
was considered as being reactive if at least 50% of the 
stimulations induced a significant modification in the 
peaks of the power spectrum in at least a given num-
ber of electrodes. In most cases the interpretation by 
the qEEG algorithm was in accordance with that of hu-
man encephalographers. In one case, present reactivity 
judged by visual inspection was not detected by the al-
gorithm (and the patient survived). On the other hand 
in six cases the algorithms detected reactivity against 
the opinion of the experts: in two of these cases the al-
gorithm was misled by burst suppression, in one case 

curred only after CA (and not, for instance, during anes-
thesia). QEEG was used to define an objective measure: 
two bursts are identical if their maximum-lagged cross-
correlation exceeds 0.75. Interestingly, one EEG initially 
selected by visual-analysis as having identical bursts 
was not detected by the algorithm. The reason was 
the short duration of the bursts compared to the time 
window used for cross-correlation, which illustrates the 
critical role of parameters in most qEEG methods. 

Reactivity, namely the modification of the EEG pat-
tern following tactile or auditory stimulus, is a classi-
cal characteristic of EEG analysis in comatose patients. 
Preserved reactivity is for instance associated with fa-
vorable outcome after CA [9]. In most cases, reactivity 
is judged solely by visual inspection. A few studies have 

Figure 1: (Top) Focal epileptic seizure in the right hemisphere recorded in the ICU (four 5-second epochs). (Bottom) Analysis by a 
commercial software («Persyst») of a 30 minutes recording with 4 seizures, from the same patient. (a) Spectrogram of the right 
hemisphere; (b) Spectrogram of the left hemisphere; (c) Spike detection; (d) Amplitude integrated EEG (blue: left; red: right); 
(e) Left-right spectrogram asymmetry; (f) Rhythmicity right hemisphere; (g) Rhythmicity left hemisphere. All measures present 
important changes during the four seizures compared to the interictal baseline.    
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by epileptiform discharges. In five out of the six “false 
positive” cases, the patient died. 

Hermans et al. [11] compared the frequency con-
tent of longer time windows, namely one minute be-
fore stimulation, and one minute during which the pa-
tient underwent a standardized set of auditive and tac-
tile stimuli. Differences in the power spectrum before 
and during stimulation were judged with five different 
quantitative measures. Some of these measures were 
also tested for specific frequency bands. The results 
of the algorithm were not compared with clinical out-
come, but with a consensus made by 3 EEG-specialists. 
The qEEG measures considering all frequency bands 
performed better than the ones restricted to specific 
frequency bands. Interestingly, the methods using spe-
cific frequency bands performed differently according 
to the channels considered. Specifically, lower frequen-
cy bands turned out to be accurate in frontal regions, 
intermediate frequencies in temporal and parietal re-
gions, and faster frequencies were more reliable in oc-
cipital regions. In summary, visual inspection remains 
the gold standard for assessing global EEG reactivity, 
however, qEEG methods exist that give results in good 
accordance and allow for band-specific analysis. 

QEEG as surrogate encephalographer

Frame-by-frame visual analysis of EEG is time-
consuming, especially for long-term ICU continuous 
monitoring. Several qEEG measures exist that emulate 
EEG-interpretation by a human electroencephalogra-
pher, some of which are even available in commercial 
software (Figure 1). To this end, algorithms have been 
implemented to detect features that are both salient 
for the human visual system, and easily programmed 
on a computer. 

One of the simplest features of an EEG signal is its 
amplitude. Amplitude integrated EEG (aEEG) is a con-
tinuous representation of the average peak-to-peak 
amplitude on a logarithmic scale. Several hours of re-
cording can be represented on a single screen, which 
can be quickly scanned by clinicians to identify seg-
ments of interest that should be reviewed in detail. 
aEEG has been initially developed for monitoring neo-
nates with post-hypoxic encephalopathy. It has been 
since then used to predict outcome after cardiac arrest 
[12] or to detect seizures in the ICU [13].

Another method often considered for computer-as-
sisted EEG interpretation is frequency analysis. A rough 
estimation of relative power of the different frequency 
band is used in visual analysis to characterize the back-
ground, describe focal slowings or localized attenua-
tions, and even to recognize seizures, which typically 
display a monotone decrease in frequency and concom-
itant increase in amplitude. Computers perform fre-
quency analysis with a much higher precision, using for 
instance the so-called Fast Fourier Transform (FFT). In 

cases of non-stationary signals such as the ICU EEG, the 
recording is decomposed into different time-windows 
on which the FFT is repeatedly computed. The results 
are then displayed as an array, referred to as spectro-
gram, or condensed spectrum array (CSA) with time on 
the horizontal axis, frequency on the vertical axis, and 
power color-coded. Similarly to aEEG, several hours of 
EEG recording can be easily visualized in a single plot 
for electroencephalographers to identify segments of 
particular interest. In a study on 118 patients admitted 
for acute illness and undergoing continuous EEG, CSA-
guided analysis was performed 4.75 times faster than 
classical analysis, identified all patients with seizures 
(though only 87% of seizures), 100% of periodic dis-
charges, 98% of focal slowing and 100% of generalized 
slowing [13]. This type of analysis has also been validat-
ed for seizure detection in pediatric patients in the ICU 
[14], or in adults by non-EEG expert [15]. 

Several numerical values can be derived from the 
power spectrum, such as the absolute power in differ-
ent frequency bands, or the ratio of power between 
different frequency bands. Monitoring these values 
has proven particularly useful in several cerebro-vas-
cular conditions, because of the progressive decrease 
in dominant EEG frequency in the minutes following a 
decrease in cerebral blood flow [16]. This approach has 
been used for instance to monitor vasospasm-induced 
delayed ischemia after subarachnoid hemorrhage [17]. 
Changes in total power, in alpha/(delta + theta) power 
ratio, in relative alpha (i.e. alpha/all frequencies) and rel-
ative delta could detect vasospasms even before clinical 
or neuroradiological signs. 

Sharply-contoured transients are also very salient for 
visual analysis, and can be detected by algorithms. An 
epileptic spike train detector was mentioned in the pre-
vious section; also isolated spikes can be detected. One 
elegant method is to use wavelet analysis. Wavelets are 
short oscillating functions of finite durations that can 
be used as alternatives to windowed FFT for frequency 
analysis of non-stationary signals. A few studies used 
sharply contoured wavelets to detect epileptic spikes: 
the wavelet is moved along the EEG signals, and at plac-
es where the two functions fit best, the EEG is likely to 
contain an epileptic spike [18]. This method has been 
used in patients in hypothermia after CA for prognosti-
cation, and to monitor status epilepticus [19].  

Further criteria classically used by electroencepha-
lographers interpreting the EEG of critically ill patients 
are continuity, regularity, and synchronization between 
different channels. The Cerebral Recovery Index (CRI) 
proposed by Tjepkema-Cloostermans et al. [20] incor-
porates all these features into a single value, which 
could assist in prediction in the early phase after CA. 
Five qEEG measures were used: the standard deviation 
of the amplitude (SD), the alpha-to-delta ratio (ADR), a 
measure of continuity for detection of burst-suppres-
sion patterns (the regularity, REG), a measure of the ir-
regularity of the signal (entropy, H), and finally the co-
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herence in the delta frequency band (COH) as synchro-
nization measure. The five measures were normalized 
and combined in the following way: CRI = SD*(ADR + 
REG + H + COH)/4.  The rational for multiplying SD with 
the average of the other four measures was that a non-
zero amplitude was required for an EEG to be normal. A 
low CRI at 24h was associated with an unfavorable out-
come, whereas high values were invariably associated 
with a favorable outcome. As the authors state: “the 
selection of features was motivated by the EEG charac-
teristics that neurophysiologists evaluate in visual in-
terpretation of the EEG in patients after cardiac arrest”. 

QEEG as a complement to visual analysis

A 19-channel EEG is a very complex pattern, many 
properties of which are not easily perceived by humans. 
Quantitative methods on the other hand can be used 
to extract parts of this “hidden information”, with the 
hope that it will increase the diagnostic and prognostic 
yield of EEG. 

Non-linear methods are a typical example of meas-
ures that humans have little intuition for. Non-linear 
methods are a set of methods that work well in the 
study of a particular type of mathematical system (de-
scribed by a set of non-linear differential equations, 
hence the name). A detailed presentation of non-line-
ar (vs. linear) methods in EEG analysis can be found in 
[21]. Here we briefly mention a few: Entropy (which 
was also already part of the CRI, see above) can be seen 
as a quantification of the unpredictability for a single 
event. For instance if a dice has the same number on 
each face (or: if the EEG voltage is constant at each 
sampling point), the entropy is low; if a dice has the 
same probability to give any number from one to six 
(or: if the amplitude of the EEG can take any value with 
equal probability), the entropy is maximal. Approxima-
tion entropy, or permutation entropy are extensions of 
the concept of unpredictability to sequences of events 
(or consecutive sampling point of an EEG channel). 
These information theoretical measures have been suc-
cessfully used to differentiate patients in minimal-con-
scious-state from those in unresponsive-wakefulness-
syndrom [22, 23]. 

Bivariate linear and non-linear measures have been 
used to compute the synchronization in EEG channels 
recorded in comatose patients between the left and 
right parasagittal regions, and between the fronto-cen-
tral and parietal regions [24]. For each EEG, a total of 8 
values were computed (four in the left-right axis, and 
four in the antero-posterior axis). With these 8 num-
bers, an EEG could be represented as a single point in 
an 8-dimensional space. A Bayesian classifier could dis-
tinguish regions within this multi-dimensional space 
containing predominantly EEG from patients who sur-
vived, or EEG from patients who deceased during their 
stay in the ICU. One of the measures also differed ac-

cording to the etiology of coma. 
Classification in a multidimensional space, as per-

formed in the previous example, is called multivariate 
decoding. This approach can detect information jointly 
represented by several variables, another property of 
complex patterns that can be intractable for humans. A 
series of studies [25, 26] have used multivariate decod-
ing with Bayesian classifiers on multichannel EEGs in a 
mismatch negativity protocol to predict outcome after 
CA.  

Another type of multivariate information hidden 
in a multiple channel EEG is the topology of functional 
networks. Networks can be represented mathemati-
cally as graphs. A graph is defined a set of elements 
(called nodes), and a set of binary connections between 
pairs of nodes (called links). To construct a graph from a 
multi-channel EEG, we consider the channels as nodes 
of the graph, and define links with the help of bivariate 
measures between the channels. In a study on patients 
after CA [27], links were defined based on similarity in 
the power spectrum. The graphs of patients with unfa-
vorable outcome were smaller (less nodes with at least 
one link), less connected (there were fewer links), and 
differed in several other graph theoretical properties 
(such as average shortest path length, cluster coeffi-
cient) from graphs derived from patients with normal 
EEG. 

Feature engineering vs. feature learning 

In all the methods presented above, the features 
(frequency, amplitude, entropy, etc.) that are analyzed 
and then used for interpretation of the EEG have been 
chosen ahead of time by the programmer, a process 
called feature engineering. On one hand, this approach 
makes perfectly sense, since neurophysiologists have 
acquired a vast knowledge about the meaning of spe-
cific EEG features. On the other hand, a potentially ex-
tremely useful feature, which no algorithm has been 
explicitly programmed to detect, might never been 
used. Feature learning (also called feature extraction, 
or representation learning) is an approach whereby an 
algorithm is fed with raw data, and automatically ex-
tracts relevant features. Principle component analysis 
(PCA) and independent component analysis (ICA) are 
popular feature extraction methods that decompose 
a signal into decorrelated or independent sub-compo-
nents, respectively. PCA and ICA can be used on EEG for 
dimension reduction, artifact eliminations, micro-state 
definition or source reconstruction. In ICU-EEG analysis, 
they have been used to measure depths of anesthesia 
[28] or to identify epochs in coma EEG that should be 
reviewed by visual analysis [29].

Deep learning methods are a class of methods that 
have recently been very successful for pattern recogni-
tion [30]. In short, deep learning is a set of hierarchical 
methods, using multiple feature extraction and pro-
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cessing units, organized in layers, whereby the output 
of one layer is used as input for the next layer. The con-
nections between the different units are adapted in a 
way that was initially inspired by synaptic plasticity in 
biological neural systems, in order to optimize specific 
output. A few studies have already applied deep learn-
ing methods to EEG. A four-layer network was used for 
classification of one-second EEG epochs recorded from 
critically ill patients into five specified categories (epi-
leptic spike, LPD, blink artefact, GPD/triphasic, continu-
ous background) [31]. The deep learning network op-
erating on raw EEG data had performances similar to 
other classifiers operating onto a set of 11 hand-coded 
EEG features (frequency band, line length, wavelet en-
ergy etc.), while being faster than the other classifiers 
when operating on the test set. One interesting proper-
ty of deep learning networks is unsupervised learning, 
namely the capability of the algorithms to automati-
cally adjust their internal parameters in order to better 
identify key features of a signal, without knowing what 
the correct classification is. This capability reduces the 
size of the training set needed for supervised learning 
(where the algorithm is informed if its decision/classi-
fication was correct or not). Unsupervised and super-
vised learning have been used to design a patient-spe-
cific seizure detector [32].

Conclusion and outlook

Quantitative methods can be used to analyse EEG 
recordings in the same way a human would, or, alterna-
tively, to extract “hidden information” that can be used 
to complement visual analysis in order to increase the 
diagnostic and prognostic yield. With the possible ex-
ception of frequency and amplitude monitoring, these 
techniques have not yet been incorporated in daily clin-
ical routine. Large prospective studies will be manda-
tory to confirm the benefit of qEEG in the ICU  –  alone 
or in conjunction with other modalities.    

In most qEEG studies so far, human programmers 
have selected by-hand the features to be analyzed, and 
designed algorithms accordingly. While this approach 
might still dominate qEEG for the next years, in the fu-
ture EEG analysis might rely more heavily on automatic 
feature extraction algorithms, in particular deep learn-
ing methods. Deep learning has already proven to be 
an extremely powerful analysis method and has thus 
been incorporated in large projects of major technology 
companies: Facebook uses deep learning for face recog-
nition, Apple for voice recognition in iPhones, Google in 
its artificial intelligence projects, including AlphaGo, the 
first algorithm capable of beating professional human 
Go players [33]. The reasons why deep learning methods 
have not yet been applied more extensively to EEG anal-
ysis are multiple: lack of large enough publicly available 
collections of EEGs, complex classification categories (in-
terpretation of an EEG only in clinical context) etc. 

It is to be expected, however, that large companies 
will begin to massively invest in deep learning for ana-
lyzing diagnostic time series such as EEG. At this point, 
we will be facing not only technological, but also philo-
sophical and even moral challenges. In deep learning 
nets, it is often no longer possible to determine which 
feature was most relevant for pattern recognition. As 
recently mentioned in an editorial in “Nature” about 
deep learning: “a human can hardly check its working, 
or verify its decision before they are followed through 
(…). The machine becomes an oracle; its pronounce-
ments have to be believed” [34]. Will we entrust an 
algorithm with the decision to withdraw support to a 
comatose patient, if we cannot follow the arguments 
of the decision? 
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