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Summary

The EEG during sleep shows a recurrent cycling pat-
tern of EEG activity representing alternating phases of 
NREM sleep and REM sleep. These dynamical changes 
between sleep behavioral states are only poorly de-
scribed by visual sleep scoring and conventional spec-
tral analysis of the sleep EEG. This review presents a 
novel model based approach for sleep EEG analysis 
(state space model) that allows for a more dynamical 
description of sleep EEG. Basic principles of mathemati-
cal modeling and EEG signal analysis are also reviewed 
and illustrated.  
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L’EEG du sommeil en « state space model »

L’EEG du sommeil présente des motifs distincts 
récurrents, correspondant aux différentes phases cy-
cliques de l’activité cérébrale au cours du sommeil. Ces 
changements dynamiques entre les phases de som-
meil sont cependant faiblement décrits par l’analyse 
conventionnelle de l’EEG, qu’elle soit visuelle ou spec-
trale. Cette revue présente un nouveau modèle mathé-
matique d’analyse de l’EEG du sommeil (« state space 
model »), qui permet une meilleure description des as-
pects dynamiques de l’EEG. Les principes de la modéli-
sation mathématique et de l’analyse du signal EEG sont 
également examinés et illustrés.  

Mots clés : EEG du sommeil, modélisation mathéma-
tique, state space analysis

Das Schlaf-EEG im « state space model » 

Das EEG im Schlaf zeigt wiederkehrende Muster 
unterschiedlicher EEG-Aktivität, welche den zyklischen 
Wechsel zwischen verschiedenen Schlafzuständen re-
präsentieren (NREM-REM-Schlafzyklus). Die konventi-
onelle Schlaf-EEG-Analyse durch visuelles Scoring oder 
Spektralanalyse kann diesen dynamischen Wechsel 

Lukas L. Imbach
Department of Neurology, University Hospital Zurich

The Sleep EEG in a State Space Model

zwischen verschiedenen Schlafstadien nur unzurei-
chend beschreiben. Dieser Übersichtsartikel präsentiert 
eine neue mathematische Methode der Model-basier-
ten EEG-Analyse, welche die dynamischen Aspekte des 
Schlaf-EEGs besser zur Darstellung bringt und quanti-
fiziert. Die Grundlagen der mathematischen Model-
lierung und der EEG-Signalanalyse werden im Artikel 
ebenfalls behandelt. 

Schlüsselwörter: Schlaf, EEG, mathematische Modellie-
rung, state space analysis  

Mathematical modeling

The scientific approach to a quantifiable prob-
lem can be divided in data acquisition (observations) 
and interpretation of observations based on assumed 
mechanisms or underlying rules (concepts). Phenom-
ena and observations take place in the external or “real 
world”, where events are observed and then translated 
to a “conceptual space”. In the conceptual space, analy-
sis and interpretation of events can be performed in a 
model based approach [1]. A model can be thought of 
as a simplified reflection of reality to interpret and con-
ceptualize observations in the real world. A model in 
this broad sense can have many forms: e.g. a regression 
curve, a block diagram or a sketch on the back of an en-
velope. Modeled data and model-based predictions are 
then compared to past (real world) observations and 
can be tested on novel experimental observations in a 
train-test approach [2]. Mathematical and computa-
tional modeling has advantages in analyses with large 
amount of data and complex interactions within the 
system that do not allow for direct interpretation of ex-
perimental observations.

Usually, the first step after the implementation of a 
computational model is to reproduce known observa-
tions and previously observed effects. An accurate de-
scription of known phenomena is a basic condition for 
a comprehensive and well-designed model. However, 
the mere replication of known observations reveals lit-
tle new knowledge and the question arises: what can 
be learned from mathematical modeling? As discussed 
in more detail in the next paragraph, a model based ap-
proach can have a two-fold impact by (i) predicting fu-
ture outcome and (ii) improving the understanding of 
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interactions and causal relationships within a complex 
system. 

For illustration, let’s consider the example of weath-
er forecasting. Observing blue sky (in the “real world”) 
today, there is a fair chance that tomorrow the weather 
will be good, too. Technically speaking, this conclusion 
derives from a simple model that predicts the weather 
tomorrow from today’s weather based on previous ex-
perience. In other words, the brain performs a Marko-
vian analysis on the time series of rainy and sunny days 
[3]. This model therefore provides a (very simple) pre-
diction of the future weather and can be compared to 
observations in the real world (“is it really sunny tomor-
row?”) and it can be verified that this model describes 
the weather in a short term temporal evolution accu-
rately [4]. However, using this model we still haven’t 
learned much about the underlying mechanisms of 
weather changes. If we consider a more complex cli-
mate model (e.g. modeling long term climate changes 
from climate data), computational approaches are 
needed to handle the large amount of multidimension-
al and interconnected data. Now, if we manage to cre-
ate an accurate mathematical model of such a system, 
the possibility arises to tackle a mechanistic question: A 
model-based approach on slow cyclic climate changes 
(“el nino years”) predicted for example, that solar activ-
ity has a predominant effect on the modeled temporal 
evolution of the climate [5]. Thus, this model delivered 
a novel hypothesis that could be tested (and verified) 
by direct observations and correlative analyses in later 
experiments. Here, the computational approach has re-
vealed an unknown mechanism that was concealed by 
the overwhelming amount of data. 

In summary, the ideal mathematical model de-
scribes known observations accurately, predicts future 
outcome and delivers novel insights in the underlying 
mechanisms of the observed system. But why do we 
need a model based approach to sleep EEG?

Sleep architecture and spectral analysis of sleep 
EEG

Since the introduction of the electroencephalogram 
(EEG) into clinical practice and neuroscience, differ-
ent sleep behavioral states have been identified and 
characterized. From a broad perspective, humans (and 
most other animals) show two distinct sleep behavioral 
states: REM sleep and non-REM sleep [5, 6].  The EEG in 
non-REM sleep is characterized by slowing background 
activity, sleep spindles, K-complexes and in its most 
pronounced state by synchronized high amplitude and 
low frequency oscillatory activity (also referred to as 
slow wave sleep). REM sleep, on the other hand, shows 
higher frequency and lower amplitude EEG activity 
similar as in the waking state. The term “paradoxical 
sleep” has therefore been introduced by Jouvet and co-
workers after the discovery of REM sleep in rodents [8]. 

Despite the continuous and rather unspectacular ab-
sence of consciousness during physiological sleep, the 
nocturnal EEG reveals a changing sequence of these 
patterns of cortical activity. Furthermore, physiological 
sleep shows a cycling pattern with alternating phases 
of NREM sleep and REM sleep (NREM-REM cycles) that 
repeat periodically approximately every 90 minutes 
[9]. The term sleep architecture is used to describe the 
alternating sequence, global structure and temporal 
variability of sleep behavioral states and can be sum-
marized graphically in a hypnogram (Figure 1A).

Beyond the behavioral description of sleep, spectral 
analysis of sleep EEG provides a quantifiable approach 
to EEG signals. Fourier transformation is the most com-
monly used method for spectral decomposition of the 
EEG into a linear superposition of harmonic oscillations. 
The introduction of spectral EEG analysis dates back 
to the 1930ies, when Dietsch and Berger introduced 
quantitative frequency analysis to the human EEG [10]. 
Digitalization of brain signals and advances in compu-
tational methods (e.g. the introduction of fast Fourier 
transformation) have led to an increased use of quanti-
tative spectral analysis to EEG in general and the sleep 
EEG in particular [11]. Whereas in recent years, non-
linear methods of data analysis are gaining influence 
in EEG data analysis in many fields, spectral analysis 
still has a predominant role in the analysis of sleep EEG 
for several reasons. Most importantly, sleep EEG  –  al-
though clearly non-deterministic – can be approximat-

Figure 1. Conventional sleep analysis.
(A) The hypnogram represents sleep stages as a function of 
time. 5 s epochs are represented for each behavioral state 
as visually scored. NREM: non-REM sleep; REM: REM-sleep;  
WAKE: waking state.  
(B) The time frequency spectrogram represents power spect-
ral density of consecutive 5 s epochs as calculated by a Fourier 
transformation algorithm. Epochs are multiplied by a Hann 
window to address edge discontinuities. 
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ed as a stationary signal and therefore analyzed by line-
ar methods (such as Fourier transformation) on a short 
time scale. In other words, by applying Fourier trans-
formation analysis on sleep EEG, we assume that the 
intrinsic properties of the EEG signal does not change 
over the time span under consideration. For example, if 
a 30 s epoch of slow wave sleep is divided into smaller 
epochs of 5 seconds length,  the signal characteristics 
in these smaller epochs do not change significantly (i.e. 
this signal is “stationary”). Furthermore, spectral analy-
sis of sleep EEG has revealed fundamental differences 
between sleep stages and has provided even defining 
properties of sleep behavioral states. For example, in-
creased slow oscillatory EEG activity is the fundamental 
property of NREM sleep (Figure 1B).  A comprehensive 
review of spectral methods in the analysis of sleep EEG 
can be found in [12]. 

These qualitative and quantitative approaches of 
sleep EEG analysis have been used extensively and de-
scribe many aspects of sleep accurately. However, these 
“conventional” approaches rely on manual scoring of 
30 s epochs and therefore dynamical aspects of chang-
es between sleep behavioral states are not, or only 
poorly described [13]. Therefore, our group recently es-
tablished a model based approach [13] a model-based 
approach to sleep EEG emphasizing the dynamical 
changes between sleep behavioral states. 

Introduction of the state space model

Sleep analysis by manual scoring of sleep behavio-
ral states is the gold-standard for clinical sleep assess-
ment. However, conventional scoring in 30 s epochs 
limits analysis of dynamic properties of sleep EEG. In 
particular, transitions between sleep behavioral states 
are poorly described. Conventional scoring of sleep be-
havioral states in 30 s epochs presents transitions be-
tween behavioral states as if they were instantaneous, 
though the visual appearance and spectral analysis of 
the EEG suggests the transitions to be gradual with in-
termediate patterns of EEG activity. For example, in a 
transition from wake into deep sleep, slow decrease of 
alpha activity and increase in delta power are observed 
at the same time indicating a “transitional state” be-
tween otherwise well-defined stable sleep stages. 

To allow for a more dynamic analysis of sleep EEG 
a novel method of EEG analysis has been introduced 
in rodents [14 - 16] and was adapted for analysis of 
healthy and pathological sleep in humans [13, 17]. In 
this approach, behavioral changes are described in a 
2-dimensional state space that is derived from spectral 
characteristics of the EEG. Importantly, by automated 
spectral analysis of subsequent EEG-epochs, this ap-
proach allows for a quantitative and un-biased analysis 
of the temporal dynamics of sleep.

A detailed explanation of the method and an accu-
rate mathematical description can be read elsewhere 

[13].  Briefly, in state space EEG analysis, the spectral 
information of each sleep EEG epoch is transformed 
into a 2-dimensional space by calculating two different 
frequency ratios of previously determined frequency 
bands. First, for each 5 second epoch, the power spec-
tral density function is estimated by calculating its 
fast Fourier transformation [3]. For a discrete signal 
of length T (defined in the period [-T/2,+T/2], it can be 
shown that the squared amplitude of the Fourier trans-
form can be taken as an approximation of the power 
spectral density (PSD) of the original signal. The state 
space is then constructed by calculating two different 
frequency ratios from previously determined frequency 
bands [13]. Thus, each EEG epoch is finally represented 
by two real valued numbers (ratio1 and ratio2) or as a 
point in the corresponding 2-dimensional state space. 
A whole night polysomnography is therefore described 
as a scatterplot with clusters representing the different 
sleep behavioral states (Figure 2A). However, in con-
trast to conventional spectral analysis or conventional 
sleep scoring, transitions between and within sleep 
states result in trajectories in the state space. 

We have adapted this model to human sleep EEG 
and optimized the parameters (i.e. the frequency 
bands) in a probabilistic Bayesian approach on sleep 
EEG of healthy controls. The optimized model has 
proven to adequately replicate manual sleep scoring 
by sleep experts and automated sleep state scoring on 
model naïve data had a mean positive predictive value 
of 80% to match manual scoring (which is similar to 
inter-expert variability) [13]. 

Thus, by reproducing current state-of-the-art con-
cepts (sleep state scoring on a fixed time frame using 
sleep scoring rules), the state space model fulfills the 
first condition for a model based approach.

Novel insights using the model based approach

However, what can we learn from the model based 
approach to sleep EEG beyond the replication of (prede-
fined) human scoring rules? The state space approach 
to the sleep EEG reveals the possibility to explore sleep 
in at least two new dimensions: the analysis of topo-
graphic and dynamical sleep characteristics [13]. 

The topography of sleep in the state space refers 
primarily to cluster arrangement. During consolidated 
phases of sleep (e.g. stable slow wave sleep), the state 
space model generates clusters (Figure 2A). This find-
ing implicates that in consolidated sleep, the EEG has 
little spectral variance, because location in state space 
translates to spectral similarity. In other words, “clus-
tered sleep” refers to stable and consolidated sleep EEG 
[13]. However, individual cluster distribution differs 
between individuals and can be altered in pathologi-
cal sleep. For example, in a mouse model of narcolepsy, 
clusters of WAKE and NREM sleep were found to be less 
separated as compared to control animals [15]. In other 
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words, the mathematical model revealed that in narco-
leptic mice the difference between behavioral states is 
less distinct. Therefore, this finding can be interpreted 
as a quantification of state-boundary dysfunction in 
narcolepsy [9, 18]. 

Regarding dynamical aspects, the state space model 
describes transitional states as trajectories between 
consolidated clusters. Manual scoring of these states 
is often difficult and ambiguous, because transitional 
states typically lack a distinct spectral pattern that 
is required by the scoring rules. Here, the state space 
model provides a smooth and continuous description 
of transitional states (Figure 2). Transitional states are 
also characterized and quantified by state space ve-

locity. Velocity in state space (defined as the Euclidean 
distance between two subsequent states divided by 
the time interval between these states) is a measure of 
sleep state stability: High velocity states correspond ei-
ther to rapid transitions between states or fluctuations 
within a state, whereas low velocity states form con-
solidated clusters [13, 17]. Analyzing sleep trajectories, 
we found that velocities in state space in 5 s intervals 
increased abruptly during transitions between behav-
ioral states [13]. 

The state space model in pathological sleep

Using this concept we have applied the state space 
model to sleep EEG of Parkinson’s patients and calculat-
ed state space velocity in PD patients and controls as a 
measure of altered sleep dynamics. We found that Par-

Figure 3. Reduced state space velocity (Bradysomia) in Parkin-
son’s patients and healthy controls. 
(A) At all electrodes, PD patients had significantly lower aver-
age velocities as compared to healthy controls (adapted from 
[17]). 
(B) Receiver operating characteristic (ROC) analysis for state 
space velocity as a potential biomarker for PD as compared to 
healthy controls. Each point on the curve represents the sen-
sitivity (true-positive rate) and false-positive rate (1 - specifi-
city) associated with a particular value for state space velocity 
(range: 0.05 - 0.14, Point A: high sensitivity/low specificity. 
Point B: low sensitivity/high specificity. 

 

Figure 2. Sleep state clusters and state space velocity. 
(A) State space analysis of a whole night polysomnography 
is shown for one control subject. Each 5 s EEG epoch (raw 
data) is represented by 2 different frequency ratios plotted 
on log/log axes. Ratio1 = (8.6 to 19.3 Hz)/(1.0 to 10.9 Hz),  
Ratio2 = (11.5 to 20.3 Hz)/(17.9 to 31.5 Hz). Color coding of 
the clusters is based on expert scoring for WAKE (red), NREM 
stage 1 (yellow), stage 2 (green), stage 3 (blue), and REM 
sleep (magenta). 
(B) The same EEG trace is analyzed and color coded by state 
space velocity (right sided color bar, [a.u.]). Stable clusters 
show low velocity values with points closely spaced (darker 
colors), whereas transitional states show higher velocities  
with points widely spaced (lighter colors). Note that low velo-
city states form clusters in state space, whereas high velocity 
states correspond to transitional states.
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kinson’s patients have a significantly lower state space 
velocity as compared to controls, i.e. changes in sleep 
EEG are less dynamic as compared to healthy sleepers 
[17]. In the terminology of the state space model, Par-
kinson’s patients are therefore “slow sleepers” and in 
analogy to bradykinesia or bradyphrenia in Parkinson’s 
patients, we introduced the term bradysomnia for this 
novel observation (Figure 3A). Thus, the model-based 
finding created the hypothesis that sleep in Parkinson’s 
disease is less dynamic and sleep architecture might be 
less modulated. Indeed, we found, that the observed 
reduction in state space velocity (corresponding to im-
paired sleep wake dynamics) correlates significantly 
with arousability (as measured conventionally by the 
arousal index) [17]. Furthermore, we found that state 
space velocity might serve as a diagnostic tool for Par-
kinson’s disease (Figure 3B) and a receiver operating 
characteristic (ROC) analysis showed the feasibility of 
using this measure as a diagnostic tool [17]. However, 
this retrospective study obviously does not validate this 
measure in terms of predictive diagnostic values in a 
clinical setting. Nevertheless, this example illustrates 
the link between a model derived finding in the “con-
ceptual world” (bradysomnia) with novel observations 
in the “real world” (reduced arousability in Parkinson’s 
disease) and its potential use in clinical practice. 

Conclusion 

The sleep EEG is a complex and highly dynamic elec-
trophysiological signal and is classically analyzed by 
visual scoring of 30 s epochs. Spectral analysis of sleep 
EEG provides a quantitative approach to sleep EEG and 
many aspects of sleep are well represented in this ap-
proach. However, dynamical aspects of sleep and spec-
tral variability are only poorly described. Describing 
sleep EEG in a model based approach allows for an un-
biased quantitative description of sleep with empha-
sis on the dynamical (transitional) sleep phases. The 
model based approach has proven to be applicable to 
healthy and pathological sleep in rodents and humans. 
Controlled studies using this model have revealed novel 
insights on the regulation of sleep wake dynamics. Fur-
thermore, a model driven analysis may provide novel 
quantitative measures that are changed in pathological 
sleep and might even be used as a diagnostic tool. Fu-
ture studies might include other groups with suspected 
state boundary dyscontrol (e.g. patients with narco-
lepsy). Finally, the state space approach is in principle 
not limited to sleep EEG. For example, dynamic changes 
of EEG in coma patients are difficult to estimate visu-
ally and might be quantifiable using the state space ap-
proach. 

Acknowledgement
 I thank Dr. Sophie Masneuf for the review of the ma-
nuscript. 

References

1.		 Clive D. Principles of Mathematical Modeling, 2nd Edition. Burlington 

MA, USA: Elsevier Academic Press, 2004

2.		 Lecca P, Tulipan D. Systemic Approaches in Bioinformatics and Computa-

tional Systems Biology. Hershey PA, USA: IGI Global, 2012

3.		 Brockwell PJ, Davis RA. Time Series: Theory and Methods. New York NY, 

USA: Springer Science & Business Media, 2013

4.		 Lawrence R. A tutorial on Hidden Markov Models and Selected Applica-

tions in Speech Recognition. Proceedings of the IEEE 1989; 77: 257-268

5.		 Ammann CM, Joos F, Schimel DS et al. Solar influence on climate during 

the past millennium: Results from transient simulations with the NCAR 

Climate System Model. PNAS 2007; 104: 3713-3718

6.		 Kales A, Rechtschaffen A. A manual of standardized terminology, tech-

niques and scoring system for sleep stages of human subjects. Bethesda 

MD, USA: US Department of Health, Education and Welfare, 1968

7.		 Iber C, Anconi S, Chesson A, Quan S. The AASM manual for the scoring of 

sleep and associated events: rules, terminology, and technical specifica-

tion, vol. 1. Darien IL, USA: American Academy of Sleep Medicine, 2007

8.		 Jouvet M. Paradoxical sleep  –  A study of its nature and mechanisms. 

Prog Brain Res 1965; 18: 20-62

9.		 Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: 

Sleep architecture, circadian regulation, and regulatory feedback. J Biol 

Rhythms 2006; 21: 482-493

10.	Dietsch G. Fourier-Analyse von Elektroencephalogrammen des Men-

schen. Pflügers Arch 1932; 230: 106-112

11.	Brigham EO. The Fast Fourier Transform and Its Applications. Upper 

Saddle River, NJ, USA: Prentice-Hall, Inc., 1988

12.	Achermann P. EEG analysis applied to sleep. Epileptologie 2009; 26: 28-

33

13.	Imbach LL, Werth E, Kallweit U et al. Inter-hemispheric oscillations in hu-

man sleep. PLoS ONE 2012; 7: e48660

14.	Gervasoni D, Lin S-C, Ribeiro S et al. Global forebrain dynamics predict 

rat behavioral states and their transitions. J Neurosci 2004; 24: 11137-

11147

15.	Diniz Behn CG, Klerman EB, Mochizuki T et al. Abnormal sleep/wake dy-

namics in orexin knockout mice. Sleep 2010; 33: 297-306

16.	Gradwohl G, Berdugo-Boura N, Segev Y, Tarasiuk A. Sleep/wake dyna-

mics changes during maturation in rats. PLoS ONE 2015; 10: e0125509

17.	Imbach LL, Sommerauer M, Poryazova R et al. Bradysomnia in Parkinson’s 

disease. Clin Neurophysiol 2016; 127: 1403-1409

18.	Saper CB, Fuller PM, Pedersen NP et al. Sleep state switching. Neuron 

2010; 68: 1023-1042

Address for correspondence:
Lukas Imbach, MD
Department of Neurology
University Hospital Zurich
Frauenklinikstrasse 26
CH 8091 Zurich
Tel. 0041 44 255 55 11
Fax 0041 44 255 4380
lukas.imbach@usz.ch


